

ÇANKAYA UNIVERSITY

COMPUTER ENGINEERING DEPARTMENT

CENG 407

PROJECT REPORT

CSEK Requirement Management

System

Members

KIVILCIM IŞIK 202011006

SARPER ERBAR 202011001

ERAY EMİR 202011016

CAN METE BOZAR 202011052

2

INTRODUCTION ... 4
PROJECT PLAN .. 5
LITERATURE REVIEW ... 6

ABSTRACT... 6
INTRODUCTION ... 6
NAVIGATING COMPLEXITY: THE ESSENTIAL ROLE OF REQUIREMENTS MANAGEMENT IN MODERN PROJECTS .. 6

• Requirements Structuring and Traceability ... 7
• Version Control and Change Management: .. 7
• Document Generation and Reporting: ... 7
• Scalability and Adaptability:.. 7
• Enhanced Collaboration and User Accessibility: .. 8

OVERVIEW OF IBM DOORS FEATURES AND STRUCTURE .. 8
• 1. Project and Folder Structure ... 9
• 2. Requirement Trace Model .. 10
• 3. Change Management ... 11
• 4. Reporting and Formatting.. 12

MARKET RESEARCH: IBM DOORS ALTERNATIVE APPLICATIONS ... 12
1. Primavera .. 12
2. Microsoft Project ... 13
3. GanttProject .. 14
4. Requirements Analysis Tool (RAT) .. 14
5. QuARS (Quality Analyzer for Requirements Specifications) ... 15

FROM USER REQUIREMENTS TO SYSTEM SPECIFICATIONS: AN AI-BASED APPROACH TO REQUIREMENT

ANALYSIS ... 17
Objective .. 17
Linguistic Analysis ... 17
Pre-Processing .. 18
Classification with ANN .. 18
Evaluation ... 19
Results and Discussion .. 19

ADAPTATION OF THIS APPROACH FOR TRANSFORMING USER REQUIREMENTS TO SYSTEM REQUIREMENTS 19
CONCLUSION ... 20

SOFTWARE REQUIREMENT SPESIFACATION ... 21
1.INTRODUCTION .. 21

1.1. PROJECT PURPOSE .. 21
1.2. PROJECT SCOPE .. 21
1.3. GLOSSARY .. 22
1.4. OVERVIEW OF THIS DOCUMENT ... 23

2. OVERALL DESCRIPTION .. 23
2.1. PRODUCT PERSPECTIVE .. 23
2.2. USER CHARACTERISTICS .. 24
2.3. GENERAL CONSTRAINTS .. 25

2.4. GENERAL ASSUMPTIONS .. 25
3. SPECIFIC REQUIREMENTS .. 26

3.1. EXTERNAL INTERFACE REQUIREMENTS ... 26
3.1.1. User Interfaces .. 26
3.1.2. Hardware Interfaces .. 26
3.1.3. Software Interfaces .. 26
3.1.4. Communications Interfaces ... 27

3.2. FUNCTIONAL REQUIREMENTS .. 27
3.2.1 Login Requirements .. 27
3.2.2. User Requirement Management .. 27
3.2.3. System Requirements Management ... 28
3.2.4. Subheading Requirements Management .. 29
3.2.5. Traceability Requirements ... 30

3

3.2.6. Change Management Requirements .. 31
3.2.7. Release Requirements .. 32
3.2.8. Reporting Requirements .. 32
3.2.9. Database Requirements ... 33

3.3. NON-FUNCTIONAL REQUIREMENTS .. 34
3.3.1. Performance .. 34
3.3.2. Security .. 34
3.3.3. Reliability .. 35
3.3.4. Usability .. 35
3.3.5. Maintainability .. 35

3.4. USE CASES ... 36
3.5. SYSTEM ATTRIBUTES ... 43

3.5.1. Portability .. 43
3.5.2. Performance .. 43
3.5.3. Usability .. 44
3.5.4. Adaptability ... 44
3.5.5. Scalability .. 44

4.SUPPORTING INFORMATION ... 44
4.1. CHANGE LOG ... 44

SOFTWARE DESING DOCUMENT ... 45
1. INTRODUCTION ... 45

1.1. PURPOSE... 45
1.2. SCOPE ... 45
1.3. GLOSSARY .. 46
1.4. OVERVIEW OF DOCUMENT ... 47
1.5. MOTIVATION .. 48

2. ARCHITECTURE DESIGN .. 48
2.1. DESIGN APPROACH .. 48
2.2. CLASS DIAGRAM .. 50
2.3. ARCHITECTURAL DESIGN... 51

• 2.3.1. Overview .. 51
• 2.3.2. Technology Stack ... 51
• 2.3.3. Microservices ... 52
• 2.3.4. Clean Architecture Diagram .. 52
• 2.3.5. Service Communication ... 53

2.4. ACTIVITY DIAGRAM ... 54
2.5. SEQUENCE DIAGRAM ... 56

3.USER INTERFACE DESIGN .. 58
CONCLUSION.. 70
REFERENCES .. 71

4

INTRODUCTION

This report aims to examine in detail the development process of the CSEK

Requirements Management System and the technologies used. Requirements management is

essential for software projects in various industries. The requirements management tools

currently used are not local and have high license costs. In this context, our designed system

provides a local, accessible, and cost-effective alternative.

The project aimed to localize IBM Doors and create a CSEK Requirements management

system integrated with two-way traceability, change management, and reporting features. In

addition, the system's primary goals are security, scalability, and a user-friendly interface. The

system, which provides accessibility with its web-based structure, can be easily used through a

modern browser.

On the other hand, the system, which is built with microservice architecture, provides a

structure that is open to future development and improvements. In the future, the system will

be able to handle the integration of artificial intelligence, various reporting formats, and user

testing.

In conclusion, the CSEK Requirements Management System provides a local, low-cost

solution that can be used in software projects, effectively addressing the requirements

management process. It is intended to be an improved requirements management tool that can

be used in various industries in the future.

5

PROJECT PLAN

6

LITERATURE REVIEW

Abstract

Project success in software and systems engineering is largely dependent on efficient

requirements management. A number of alternative tools have surfaced as a result of cost,

complexity, or particular project requirements, however IBM DOORS has been a well-known

tool for tracking, evaluating, and managing complicated requirements. The structure and

functionality of IBM DOORS are examined in this paper, along with its reporting features,

requirement trace models, and change management integration. A comparison of alternatives

like Primavera, Microsoft Project, and specialized tools like RAT and QuARS is also carried

out in order to evaluate their advantages and disadvantages in terms of enabling requirements

engineering. Additionally, to improve efficiency and accuracy in requirement analysis, the

paper suggests an AI-based method that combines Artificial Neural Networks and Natural

Language Processing to automate the conversion of user needs into system specifications. Even

though handling complicated linguistic structures can be challenging, the AI-based approach

has the potential to greatly enhance the software development process' demand analysis step.

Introduction

Requirements management is a foundational discipline in software and systems

engineering, ensuring that all project stakeholders' needs are effectively captured, documented,

and tracked throughout the lifecycle of a project. IBM DOORS has long been a leading solution

for managing complex requirements, offering robust features such as requirement traceability,

version control, and automated reporting. However, due to its high cost and complexity, many

organizations seek alternative tools to meet their specific project needs. In this report, we

explore the features of IBM DOORS and examine several alternatives, focusing on their

strengths and limitations in various project contexts. Additionally, we introduce an innovative

approach that integrates Artificial Intelligence to automate the transformation of user

requirements into system specifications, highlighting the potential benefits and challenges

associated with this technology. By combining insights from industry-standard tools and AI

techniques, this report aims to provide a comprehensive understanding of the current landscape

in requirements management and offer new avenues for enhancing the efficiency and accuracy

of requirement analysis.

Navigating Complexity: The Essential Role of Requirements
Management in Modern Projects

Requirements management is a important and critical discipline in software and systems

engineering, offering a structured approach for documenting, tracking, and adapting

requirements across a project’s lifecycle. Requirements management is essential for ensuring

that all project stakeholders’ needs are met, reducing the risk of misalignment or project scope

issues that can arise when requirements are unclear or inconsistent. In order to reduce risks,

eliminate scope creep, and enhance project outcomes, effective requirements management

promotes traceability, upholds consistency, and encourages strong documentation.

7

The role of requirements management becomes significant in large and complex

projects, where maintaining control over numerous, interrelated requirements is essential. As a

result, requirements management systems have become extremely effective supporters,

enabling teams to approach complicated requirements methodically and guaranteeing

coordination amongst distant development teams. According to Kühn, Hoffmann, and Weber,

requirements management tools provide significant features that facilitate and assist

requirements management procedures, meeting a number of essential requirements:

• Requirements Structuring and Traceability: Linking requirements to other

project artifacts, such design documents, testing specifications, and implementation

records, is a crucial feature of requirements management solutions. Project teams can

track changes through each phase, comprehend and manage dependencies, and

guarantee consistency throughout development phases thanks to this traceability. In

order to improve visibility and lower the possibility of discrepancies, the tools provide

bidirectional traceability, which is essential for determining the source of each

requirement and its influence on later phases. (Kühn et al., 2004).

• Version Control and Change Management: Requirements management

solutions help with version control, which makes it simpler to monitor changes over

time because updates are frequently needed, particularly in agile or iterative

development contexts. Kühn claim that these tools keep thorough change histories that

differentiate between significant and small alterations in addition to tracking changes at

the level of individual requirements. The level of documentation supports a strong audit

trail and helps prevent the loss of important information by enabling stakeholders to go

back to earlier versions if needed. Change requests can be handled methodically thanks

to integrated workflows, which also encourage accountability and offer real-time status

information.

• Document Generation and Reporting: Requirements management tools

simplify documentation by automatically generating reports, specifications, and other

essential documents from the requirements. Document consistency and dependability

are ensured by this automation, which also saves time and lowers human mistake.

According to Kühn, document generation is especially useful in sectors where thorough

documentation is required for regulatory compliance or as a component of agreements

with outside parties like suppliers in the automotive industry.

• Scalability and Adaptability: Requirements management tools are designed to be

highly scalable, catering to the diverse and growing needs of large projects. These tools

8

can manage vast amounts of data, and their adaptability allows them to be customized

to fit specific project requirements, processes, and organizational needs. Kühn note that

requirements management software may be set up to support domain-specific needs,

which is especially advantageous for sectors like aerospace and automotive that have

unique project workflows or specialized regulatory standards.

• Enhanced Collaboration and User Accessibility: Collaboration is

fundamental to successful requirements management, particularly in globally

distributed teams. Requirements management software includes features that enhance

teamwork, such as user-specific views and centralized databases, and allows team

members to work on various project components simultaneously while remaining

consistent. Additionally, some solutions provide web-based access, which improves

accessibility and lowers administrative overhead by enabling infrequent users or outside

contributors to interact with requirements without requiring full software installations.

(Kühn et al., 2004).

The requirements management process has been revolutionized by the incorporation of

requirements management tools into project management workflows. These technologies offer

a simplified, automated way to handle complicated requirements, preserve uniformity, and

encourage teamwork. Integration features that enable requirements management technologies

to work in unison with other development tools, such configuration management and testing

software, are becoming more and more important as these tools advance. This integration

supports end-to-end traceability and ensures that each requirement is continuously linked to its

corresponding artifacts throughout the product lifecycle.

Research indicates that by decreasing errors, guaranteeing requirements consistency,

and promoting adherence to legal requirements, requirements management technologies, when

used properly, can greatly improve project outcomes. These solutions are now essential in

industries like aerospace and automotive, where big project teams and frequent changes call for

a more structured approach to requirements management. In order to better support complicated

project needs, requirements management solutions will continue to be developed with an

emphasis on accessibility, scalability, and integration with artificial intelligence for predictive

analytics.

Overview of IBM DOORS Features and Structure

IBM DOORS (Dynamic Object-Oriented Requirements System) is powerful software

designed to manage and track requirements in large-scale projects. It helps organize

requirements in a clear project and folder structure. DOORS offers a requirement trace model

that includes modules, linking, and specific folder, module, and linking models to ensure that

requirements are connected and easy to trace. In addition, its reporting and data export features

allow project teams to analyze and share important information efficiently. Together, these

features make DOORS a flexible, traceable, and effective tool for requirement management.

9

• 1. Project and Folder Structure

IBM DOORS projects and folders serve as containers for information, typically

containing formal modules and link modules. Folders are hierarchical (parent and child folders)

and are listed alphabetically by default. In smaller projects, placing all requirement modules in

one folder may be sufficient.

In some projects, the requirements traceability hierarchy may differ from the physical

product structure or bill of materials, often resembling a document structure more closely. If

requirements are traditionally managed in a document-based model, this structure may be

replicated in DOORS, though complex document structures may not easily translate to DOORS’

object-oriented database.

To meet traceability and reporting needs, the structure must be modeled and tested. For

this, the ReqMAPS team uses Object Role Modeling (ORM) methodology to model project and

folder structures, attributes, views, and link sets. Each sub-folder in the requirements folder

structure contains information at the same level within the linking model.

 Figure 1: The Standard Folder Structure

10

• 2. Requirement Trace Model

2.1. Modules: Whether requirements are created directly in DOORS or imported from

other files, a module/linking model should be established to support linking,

traceability, and reporting. Creating requirements in DOORS with a defined

information structure helps clarify which modules should be linked and ensures

requirements are built to support relationships, such as satisfies relationships.

Reviewing all requirement information and relationships within a model also simplifies

validating the linking model.

2.2. Linking: In the traceability hierarchy, requirements are allocated downward and

traced upward. For traceability reports to function correctly, levels should not be

skipped. The same link set is reused across levels to enable full traceability. The

direction of linking is essential because linking data is stored in the source module;

thus, the source module requires editing permissions, while read-only access is enough

for the target module. Different types of relationships, such as between requirement

modules and modules like Qualification or Document Reference, can use link sets in

opposite directions. All link sets should be created in DOORS before any linking;

otherwise, DOORS will create a default link module, which should be removed using

an audit script after confirming no links were created with it.

Figure 2: Linking Model Example

2.3. Folder, Module, and Linking Models: Two general examples of folder,

module, and link set models are provided. The 1_Level folder might contain customer

requirements, while the 2_Level folder could hold system requirements. To maintain

11

trace integrity, link sets should never skip levels. The examples illustrate traditional

vertical structures and flattened structures using the satisfies linking model, suitable for

cases where the document set does not fit traditional traceability.

Figure 3 Folder, Module, and Link set Model for the satisfies Vertical Structure

• 3. Change Management

IBM DOORS integrates change management with traceability, enabling effective tracking

of updates to requirements. When changes are made, the system tracks which requirements are

affected, what the changes entail, and how these changes may impact the project scope.

Documentation of changes and notification of relevant stakeholders are supported by DOORS’

robust traceability structure. Users can view the history of changes and understand which

modules, requirements, or links are impacted by each update. This ensures that all changes can

be reviewed and approved before they impact project requirements, enhancing the reliability of

change management.

12

• 4. Reporting and Formatting

IBM DOORS provides powerful options for exporting data, such as requirements and

traceability links, into MS Word format, enabling users to share project details with stakeholders

and maintain clear, accurate documentation. Customizable report templates help tailor reports

to specific needs, and traceability information can be included to enhance report completeness.

This integration facilitates easy tracking of project progress through detailed documentation.

When exporting data from DOORS to MS Word, formatting can be influenced by the

method used. If DOORS' internal tools or custom scripts are employed, the data is sent in a

DOORS-specified format, such as indented paragraphs. While this may be suitable for some, it

may cause formatting inconsistencies with elements like tabs, bullets, or Rich Text Formatting

(RTF), which may not be fully compatible with MS Word.

To address these issues, the Reporting and Publishing Engine (RPE) can be used to

export DOORS data with more advanced formatting. By utilizing the att.RPEStyle attribute,

which corresponds to MS Word's paragraph styles, RPE can instruct MS Word on how to format

the content. In this approach, DOORS objects are not pre-formatted, allowing RPE to apply

more sophisticated formatting and enabling quick adjustments. This method offers greater

flexibility and control over the final appearance of the report, overcoming the limitations of

DOORS' native formatting options.

Market Research: IBM DOORS Alternative Applications
 In the field of requirements engineering, IBM DOORS has long been a prominent tool

for managing, analyzing, and tracking requirements in complex projects. However, while

DOORS is comprehensive, some organizations seek alternatives due to its cost, complexity, or

limitations in specific project contexts. This part explores several alternative tools to IBM

DOORS, examining their capabilities in requirements management, project scheduling, and

requirements analysis. Each tool is reviewed for its strengths and functionalities, but we also

highlight critical shortcomings—whether in traceability, integration, usability, or

costeffectiveness—that may impact their suitability as an alternative for IBM DOORS in

various engineering environments.

1. Primavera

Primavera is primarily a project management tool that is frequently adapted for requirements

and project scheduling, particularly in large-scale projects where multi-project planning and

tracking are needed. Key features include:

• Scheduling and Tracking: Primavera uses the Critical Path Method (CPM) to

calculate project schedules based on activity duration and interdependencies. This tool

provides flexibility in adjusting project timelines and viewing progress.

• Resource Management: The software supports detailed management of labor,

material, and non-labor resources, making it suitable for projects with complex resource

allocations.

13

• Comprehensive Reporting: Users can generate a variety of reports, enhancing

transparency and enabling detailed performance tracking.

Drawbacks:

• High Cost: Primavera is relatively expensive compared to other tools, which can be a

barrier for small to mid-sized projects or companies.

• Limited Issue Tracking: Users report limitations in defect and issue tracking,

especially in the early stages. Many users noted the need to dedicate separate sprints just

for resolving bugs and issues.

• Complexity and Usability: Primavera’s extensive features can make it cumbersome

and difficult to navigate, especially for those not deeply trained in project management.

2. Microsoft Project

Microsoft Project is a versatile tool commonly used in requirements and project management

due to its intuitive interface and functionality. It is well-suited for planning, scheduling, resource

allocation, and tracking project progress. Key functionalities include:

• Milestone and Task Management: The tool enables users to define milestones,

track project progress against set timelines, and adjust schedules based on project needs.

• Resource Allocation and Management: Microsoft Project allows users to

assign resources, manage workloads, and track time, giving project managers a clear

view of resource utilization.

• Gantt Chart Visualization: The tool’s Gantt chart feature provides a clear,

graphical representation of project timelines, dependencies, and task status.

Drawbacks:

• Rigid Scheduling Constraints: New users may inadvertently apply constraints to tasks,

leading to inflexible scheduling. These constraints, particularly when placed on too

many tasks, can restrict the ability to adapt to changing project demands.

• Tracking Limitations for Short Tasks: Tracking tasks that span only minutes or hours

may be impractical, as the tool is more suited for longer-duration projects and

milestones.

14

• Limited Integration with Other RE Tools: Microsoft Project lacks strong integration

with specialized RE tools, making it challenging to manage requirements tracking and

traceability effectively within the same system.

3. GanttProject

GanttProject is an open-source, cross-platform tool mainly designed for task scheduling and

resource management. Known for its lightweight interface and ease of use, GanttProject is

popular in smaller projects or educational settings. Key features include:

• Gantt and PERT Charting: It provides Gantt charts for project scheduling and

PERT charts for dependency analysis, both useful for visualizing project timelines and

relationships between tasks.

• Resource Allocation: While basic, the resource allocation feature allows for

effective task management across teams.

• Work Breakdown Structure (WBS): GanttProject offers a WBS feature that

breaks down complex projects into manageable tasks, facilitating project planning.

Drawbacks:

• Limited Features for Large-Scale Projects: GanttProject lacks advanced features,

such as intricate reporting and automated tracking, which may make it less effective for

large-scale or enterprise-level projects.

• Basic Resource Management: Resource management capabilities are limited and may

not support complex resource allocation needs as effectively as other RE tools like

Microsoft Project.

• Compatibility and Export Issues: Although the software supports export to PDF and

HTML, interoperability with other RE and project management tools remains limited,

potentially creating issues for projects that require extensive reporting.

4. Requirements Analysis Tool (RAT)

Developed by Accenture, the Requirements Analysis Tool (RAT) is specifically designed to

analyze requirements documents by performing both syntactic and semantic analysis. RAT

combines structured content extraction with domain-specific ontologies, making it highly useful

for identifying ambiguities and inconsistencies within requirements. Key features include:

15

• Controlled Syntax and User-Defined Glossaries: RAT enforces structured

syntax and user-defined glossaries, which improve consistency and clarity across

requirements documentation.

• Semantic and Syntactic Analysis: RAT utilizes a semantic engine to perform

deep semantic analysis, identifying gaps, conflicts, and dependencies among

requirements, which reduces the potential for misinterpretation or ambiguity.

• Problem Phrase Glossary: RAT has an extensive glossary of problematic phrases,

helping to detect vague terms that could lead to misinterpretations (e.g., ambiguous

timeframes like "daily" or terms like "quickly").

Drawbacks:

• High Dependency on Glossary Maintenance: While effective, RAT’s reliance on

user-defined glossaries means it requires continuous maintenance to stay relevant to

specific project needs and terminologies.

• Complex Setup for Non-Technical Users: RAT’s features may be challenging for

nontechnical users due to its emphasis on structured syntax and controlled language,

making it less accessible for stakeholders without a technical background.

• Limited Integration with RE and Project Management Tools: RAT primarily

focuses on requirements analysis and lacks robust integration with tools for broader

project management activities, such as scheduling and task tracking.

5. QuARS (Quality Analyzer for Requirements Specifications)

QuARS is a requirements analysis tool known for its support in improving the quality of

requirements specifications. It focuses on identifying linguistic and syntactic issues within

requirements documents, which helps organizations enhance the clarity and consistency of their

requirements. Key features include:

• Linguistic Analysis: QuARS evaluates the language used in requirements to

identify ambiguities, inconsistencies, and incompleteness, which often lead to

misinterpretations during development.

16

• Support for Requirements Quality Control: The tool offers built-in metrics

for assessing the quality of requirements, allowing users to measure aspects like clarity,

precision, and consistency.

• Phrasal Analysis: It uses specific algorithms to scan for problematic phrases,

making it especially useful in projects where requirements are captured in natural

language.

Drawbacks:

• Limited Scope of Analysis: QuARS is restricted to linguistic and syntactic analysis,

lacking deeper semantic analysis capabilities. This means it may not detect complex

interdependencies between requirements effectively.

• No Native Traceability Features: QuARS does not support requirements traceability

natively, which is a crucial feature for managing changes and tracking requirement

lifecycle.

• Dependency on Well-Written Requirements: The effectiveness of QuARS depends

significantly on the initial quality of requirements. If requirements are already

wellstructured, the tool’s benefit may be limited.

In comparison to IBM DOORS, which provides extensive support for requirements

management, traceability, and collaboration in large projects, many alternative tools focus on

specific aspects of requirements engineering, such as project management (Primavera,

Microsoft Project), linguistic analysis (QuARS), or requirements analysis (RAT). While these

tools offer unique advantages, they often lack the comprehensive traceability and integration

that DOORS provides.

Each of the tools reviewed has limitations that could affect its suitability depending on project

size, complexity, and specific RE needs:

• For Project Management-Centric Needs: Primavera and Microsoft Project offer

robust scheduling, resource management, and milestone tracking. However, they lack

detailed requirements analysis features and may not integrate seamlessly with

traceability needs.

• For Requirements Quality and Analysis: Tools like RAT and QuARS provide strong

analytical capabilities but are often limited by lack of integration with broader project

management tools. These tools are suitable for ensuring requirements clarity and

consistency but may require additional tools for full project lifecycle support.

17

• For Lightweight Project Management: GanttProject is a good choice for simpler

projects but lacks the advanced features necessary for complex requirements

management.

From User Requirements to System Specifications: An AI-Based
Approach to Requirement Analysis

In this project, we aim to leverage artificial intelligence (AI) technology to automatically

generate system requirements from user requirements. The methods and results derived from

reviewing similar research are summarized in this section of the report.

This study proposes an approach for automatically extracting key use-case

components—specifically actors and actions—from software requirement documents written in

natural language. By combining Artificial Neural Networks (ANN) and Natural Language

Processing (NLP) techniques, the goal is to enhance the speed and accuracy of requirement

analysis. The study utilizes the GATE (General Architecture for Text Engineering) platform for

linguistic analysis, followed by classification of extracted features using ANN.

Objective

 In software development, requirement documents play a crucial role in conveying

detailed information about system functionality. However, manually extracting and processing

this information is time-consuming and error-prone. The aim of this study is to automate the

detection of actors and actions expressed in natural language within these documents, thus

improving efficiency.

Methodology

The methodology integrates NLP and ANN for requirement analysis, divided into four

key stages:

Linguistic Analysis

- Tokenization: The text is broken down into tokens (e.g., words, sentences),

which serve as input for further analysis.

- Syntax Analysis: The grammatical structure of sentences is analyzed using tools

like GATE and Stanford-CoreNLP.

- Semantic Analysis: Actions and their associated actors are analyzed based on

semantic relationships to identify use-case components.

18

Figure 4 NLP components

Pre-Processing

- Tokens, categories (e.g., nouns, verbs), and dependencies are encoded

numerically to prepare them for classification by the ANN.

Classification with ANN

- A Back-Propagation Neural Network (BPNN) classifies linguistic components

into use-case labels (actor, action, other).

- The network includes an input layer, hidden layers, and an output layer, with

training carried out using MATLAB’s neural network tools.

Figure 5 BPNN topology of IT4RE

19

Evaluation

- The network's performance is assessed using precision, recall, and F-measure metrics

to evaluate the accuracy of classification.

Results and Discussion

The results indicated that precision varied between 17% and 63%, while recall ranged

from 5% to 100%. The average F-measure was 55%, suggesting that the method performed less

effectively with complex sentence structures and specialized vocabulary due to limitations in

NLP tools. However, this approach demonstrates an efficient and accurate method for

requirement analysis by integrating NLP and ANN techniques. Enhancing NLP tools and model

parameters is necessary to improve accuracy, especially for handling complex linguistic

structures.

Adaptation of this Approach for Transforming User Requirements
to System Requirements

This combined ANN and NLP approach can be adapted to automatically convert user

requirements into system requirements by interpreting and specifying them in a more technical,

system-level language. The process would involve the following steps:

- Extended Linguistic Analysis: User requirements, often expressed in high-level

terms, would be analyzed for key concepts and inferences. Using Concept

Mapping, general terms are mapped to specific system functions or modules,

while Inference is used to derive more detailed system requirements.

- Pre-Processing and Encoding: Key terms and dependencies are encoded in a

technical language, facilitating the definition of system-level dependencies and

features.

- Mapping User Requirements to System Requirements: A customized ANN

model would categorize user requirements into system requirement categories

such as functionality, performance, and security. Specific rules guide the

transformation process based on recognized patterns.

- System Requirement Generation: The model generates detailed system

requirements, extracting technical specifications and organizing them into

functional modules, thereby providing a structured transition from user

requirements to system design.

This method, combining ANN and NLP, offers a promising solution for automating the

conversion of user requirements into system requirements. However, to achieve greater

accuracy, especially in handling complex language structures, further improvements in NLP

tools and model parameters are needed. This approach has the potential to significantly enhance

the efficiency of requirement analysis processes in software development projects.

20

Conclusion
Effective requirements management is essential for the success of complex software and

systems engineering projects. IBM DOORS has proven to be a comprehensive solution for

handling the intricacies of requirements traceability, version control, and reporting. However,

due to its cost and complexity, many organizations turn to alternative tools such as Primavera,

Microsoft Project, and specialized analysis tools like RAT and QuARS, each with distinct

advantages and drawbacks. While these alternatives may be suitable for specific project needs,

they often lack the comprehensive traceability and integration that IBM DOORS offers.

Furthermore, the application of Artificial Intelligence, specifically Natural Language

Processing (NLP) and Artificial Neural Networks (ANN), presents an exciting opportunity to

automate the conversion of user requirements into system requirements. This AI-based

approach, though not without challenges in handling complex linguistic structures, shows

promise in enhancing the speed and accuracy of requirement analysis, offering significant

improvements in project efficiency. Continued advancements in AI and NLP technologies will

further refine this approach, enabling more seamless transitions from user requirements to

system specifications in the future.

21

SOFTWARE REQUIREMENT SPESIFACATION

1.Introduction
1.1. Project Purpose

The purpose of CSEK Requirements Management System is to develop a new, local

requirements management system. One of the most important tools in this field, IBM DOORS,

has served as an inspiration for the localization of our project. IBM DOORS is a requirements

management tool with a significant role in the defense industry and high licensing costs. The

primary goal of our project is to localize this critical tool, for various sectors, and provide a

more accessible, customizable, and cost-effective alternative suitable for our country.

1.2. Project Scope

The aim of this project is to develop a local requirements management system solution

for the defense sector. Widely used technologies like IBM DOORS present operational and

budgetary challenges due to high licensing costs and limited accessibility in regional defense

projects. Our project aims to provide a more cost-effective, flexible, and locally developed

alternative to these existing technologies.

The system will offer configurable role-based access control based on user needs. It will

allow users with roles such as Administrator, System Engineer, and Reviewer to access only

the areas relevant to their specific responsibilities. This approach will ensure a secure system

while minimizing potential errors. Additionally, the system will enable precise organization,

categorization, and efficient management of requirements across multiple projects.

The system will provide bidirectional traceability of requirements, allowing users to

quickly assess how one requirement impacts others. In the context of change management, the

system will ensure traceability of all changes, including revisions and deletions. Users will also

benefit from reporting features that allow the export of requirements in various formats, such

as MS Word and PDF.

The completed system will not only offer a cost-effective solution for defense projects

but will also add significant value in terms of data security and customization. As a locally

developed software solution, it will comply with national security standards and meet the

technological requirements of defense projects. Our project can be positioned as a critical step

in ensuring the sustainability and cost-efficiency of the defense sector.

Although artificial intelligence integration was considered for the generation of system

requirements in the initial planning stages, it would be a better approach to leave this part as a

part of the system that can be developed later due to the difficulties of finding datasets for model

training.

In addition to this, the system is open to future development in terms of features that are

not included in our current project design, such as user input of tests of system requirements,

tasking feature where project managers can assign which tasks to be performed by whom, and

adding different formats to the reporting process in the export section.

22

1.3. Glossary

• IBM DOORS:

A software tool used for requirements management, widely preferred in the defense industry

and known for its high license fees.

• Role-Based Access Control (RBAC):

An access control mechanism for determining and managing the authorization of users in the

system according to their roles.

• Bidirectional Traceability:

Bidirectional linking of requirements so that it is possible to quickly analyze how one

requirement affects others.

• Baseline:

A structure that is saved as a fixed version of the requirements at a given moment. Allows

changes to be tracked.

• Microservices Architecture:

Software architecture that allows systems to be composed of independent, small and modular

services.

• Keycloak:

An open source tool for authentication and authorization.

• REST API:

A protocol used for communication between applications. Works in accordance with OpenAPI

standards.

• Netflix Eureka:

A service discovery tool that allows dynamic registration and discovery of microservices.

• gRPC:

A communication protocol that enables fast and low latency communication between

microservices.

• Kafka:

A messaging tool for event-based communication and data processing.

• Redis:

A caching system used to reduce database load and ensure that frequently accessed data is stored

in the cache.

• OAuth 2.0:

An open standard protocol used for authorization.

• AES-256:

An encryption algorithm used to protect data.

23

1.4. Overview of This Document

This document has been prepared to detail the requirements for the development of our

project named CSEK Requirements Management System. This project focuses on addressing

the issue of most requirement management tools used in various industries being non-local and

having high licensing fees. Our project targets a user base that manages projects by utilizing

requirement management tools used in various sectors.

The Introduction section includes the purpose, scope, glossary, references, and this part,

which is the overview section. The purpose of the Introduction section is to provide a brief

definition of the project and explain its objectives. The Overall Description section includes

topics such as the software's general perspective, user characteristics, and constraints. The

Specific Requirements section details functional, performance, and interface requirements. The

Supporting Information section provides additional explanations. Overall, this document is

designed as a guide for developers.

2. Overall Description
2.1. Product Perspective

 CSEK Requirements Management System provides a standalone software solution

designed to efficiently manage, track and organize project requirements. The system aims to

solve the problems of existing requirements management tools such as high license costs, local

incompatibilities and complexity. By providing users with a customizable and economical tool,

it plans to reduce dependency on traditional software in the industry.

It has a user-friendly and web-based interface, so users can access the system from any

modern browser. It offers an intuitive menu that makes it easy to use and allows users to easily

navigate between requirements, reports, baselines and historical records. It also provides a

visual indicator next to changed or unapproved requirements, allowing users to easily track

changes and approval processes. The system provides clear feedback on all actions taken by

users.

The CSEK Requirements Management System provides a stable environment with

extensive user assistance. The system is intended to run on strong server hardware capable of

supporting up to 500 users simultaneously. It also supports cloud-based infrastructure services

(such as AWS), which offer scalability and flexibility. The software utilizes a variety of

innovative software interfaces. The system uses Keycloak for authentication and authorization,

allowing users to log in securely. Role-based access control stops users from gaining unwanted

access, making the environment more secure. REST APIs that follow OpenAPI standards

facilitate communication between user and system services, as well as external applications.

Netflix Eureka enables dynamic registration and discovery of microservices, making it possible

for the system to have a modular and flexible structure. Simultaneous communication between

microservices is provided using gRPC. The communication between user requirements, system

requirements and sub-header requirements microservices is realized through this infrastructure.

Kafka provides synchronized communication between requirements microservices and

snapshot services, enabling efficient event-driven communication. Using a PostgreSQL 13 or

higher database, all requirements and associated change history are securely stored. Redis

improves performance and reduces database load by caching frequently accessed data. With

comprehensive traceability, it is possible to create links between all user, system and sub-header

requirements and easily trace the source of each requirement or the areas it affects.

Furthermore, the system enables users to create customized reports according to their needs.

24

Requirements can be exported in Word and PDF formats while maintaining their hierarchical

structure. Users can get results in a short time thanks to the system's fast reporting feature.

Finally, CSEK Requirements Management System stands out as a cost-effective and

high-performance solution. Easily adaptable to local needs, it offers a software that can be ideal

for most levels of organizations, from small and medium-sized enterprises to large corporations.

The system enables organizations to manage their requirements in an organized, reliable and

efficient manner.

2.2. User Characteristics
 The system offers functionality based on three primary roles: Admin, System Engineer,

and Reviewer.

1.Administrator:

• Required Features:

Ability to assign and edit user roles.

Ability to manage user access, add or remove users from the system.

Ability to create, edit, and manage project requirements.

Ability to define user permissions to ensure system security.

Ability to create and manage project baselines.

• Access:

Full access to all system functionalities (create, edit, delete requirements, manage users).

Authority to manage user roles, permissions, and requirements.

Authority to create, manage, and delete project baselines.

Authority to ensure system security and data integrity.

2.System Engineer

• Required Features:

Ability to create, edit, track, and manage user, system, and subheading requirements.

Ability to link requirements for traceability.

Ability to assign attributes to requirements to organize them effectively.

• Access:

Access to create, edit, manage, and track requirements.

Authority to establish links between requirements for traceability.

Authority to update and delete requirements (validation is required).

3.Reviewer

• Required Features:

Ability to view all types of requirements (user, system, subheading).

Ability to review the accuracy and quality of requirements.

Ability to export requirements in formats such as PDF and Word (reporting).

• Access:

Read-only access to all requirements.

Authority to report and export requirements.

No authority to edit or delete content.

These assignments and roles will provide the opportunity to minimize errors and create a secure

environment in the system.

25

2.3. General Constraints
• Hardware Capacity:

The system is optimized to support a maximum of 500 concurrent users at the same time.

Additional server resources will be required for more users.

• Access Control:

Only authenticated and authorized users can access the system.

• Connection Requirement:

The system can only be used with a continuous internet connection.

• Project Duration:

The system is scheduled for delivery within 6 months.

• Language Support:

The first release will only provide support for certain languages. Other languages will be

developed in subsequent releases.

• Platform Dependency:

The system will be web-based only and no mobile application support will be provided.

• Legal Restrictions:

The system must comply with the local legal regulations of the countries.

These clauses guarantee the completion of the project within the specified limits and

compliance with certain standards.

2.4. General Assumptions

• User Access:

All users will have an internet connection and a modern web browser to access the system.

• User Technical Knowledge:

Users are assumed to have basic computer skills.

• System Load:

The system is optimized to support a maximum of 500 simultaneous users. It is assumed that

the number of users will not exceed this limit.

• Data Quality:

It is assumed that the data to be entered into the system is accurate, complete and in the

appropriate format. It is assumed that no incorrect or incomplete data will be entered.

• Integration:

The system will work seamlessly with other systems in accordance with the specified API

standards and integration components.

• Legal Compliance:

It is assumed that the legal regulations regarding data privacy and security in the regions where

the system will be implemented will not change during the project period.

26

• Project Schedule:

It is assumed that the project team will adhere to the planned timeline and that there will be no

major delays during the project.

These assumptions represent the basic principles underlying the planning and implementation

phases of the project.

3. Specific Requirements
3.1. External Interface Requirements

3.1.1. User Interfaces

• The system shall provide a web-based user interface accessible via modern browsers.

• The system shall provide an intuitive navigation menu to allow users to easily navigate

between requirements, reports, baselines, and history logs.

• The system shall provide a visual indicator (e.g., a star icon) next to modified or

unapproved requirements, allowing users to track changes and approvals.

• The system shall provide clear visual feedback for user actions.

• The system shall display error messages in clear, understandable language when an

action cannot be completed.

3.1.2. Hardware Interfaces

• The system shall run on server hardware with sufficient CPU, memory, and storage to

support up to 500 concurrent users.

• The system shall support cloud-based infrastructure services for deployment and scaling

(eg. AWS).

3.1.3. Software Interfaces

• The system shall integrate with Keycloak for authentication and authorization,

leveraging its IAM capabilities.

• The system shall use REST APIs for communication between user and system services

and external applications, as defined by OpenAPI specifications.

• The system shall use Netflix Eureka for service discovery to enable dynamic registration

and discovery of microservices.

• The system shall use gRPC for synchronous inter-service communication between user

requirements microservice, system requirements microservice, and subheading

requirements microservice.

• The system shall use Kafka for synchronous communication between requirement

microservices and snapshot services for efficient event-driven communication.

• The system shall integrate with Redis for caching frequently accessed data to improve

performance and reduce database load.

• The system shall integrate with PostgreSQL 13 or higher for database management and

storage.

27

3.1.4. Communications Interfaces

• The system shall ensure secure communication for all API requests via OAuth 2.0

authentication.

• The system shall leverage Netflix Eureka for service discovery, enabling seamless

communication between microservices by dynamically locating and accessing available

services.

• The system shall use gRPC for efficient and low-latency communication between user,

system, and subheading requirement microservices.

• The system shall use Kafka for communication between requirement microservices and

snapshot services, supporting event-driven architecture.

• The system shall use Redis for caching purposes to improve performance and reduce

latency during inter-service communication.

3.2. Functional Requirements
3.2.1 Login Requirements

FR 1.1:

• The system shall support three distinct user roles: Admin, System Engineer, and

Reviewer.

o Users must log in with a role-based account to access the system.

FR 1.2:

• The system shall require a valid username and password for authentication.

o All users must provide credentials to access the system.

FR 1.3:

• The system shall allow admins to assign user roles (Admin, System Engineer, Reviewer)

during user registration.

o Admins are responsible for managing user access and roles.

FR 1.4:

• The system shall restrict access to system features based on the user's assigned role.

o Different roles (Admin, System Engineer, Reviewer) have access to specific

system functionalities.

3.2.2. User Requirement Management

FR 2.1:

• The system shall allow system engineers to create new user requirements.

28

FR 2.2:

• The system shall automatically generate a unique identifier for each user requirement

based on its type (e.g., UR-001).

o This facilitates easy reference and management of requirements.

FR 2.3:

• The system shall allow system engineers to input input text, numerical values and dates

for the user requirement.

FR 2.4:

• The system shall allow system engineers to add images to a requirement description.

o Supports enhanced documentation of requirements with visual elements.

FR 2.5:

• The system shall allow system engineers to assign each user requirement to a specific

attribute.

o Helps in better definition and understanding of requirements.

FR 2.6:

• The system shall allow system engineers to underline important points and bold text

when needed.

o System engineers can apply bold or underline styles to selected text.

FR 2.7:

• The system shall allow reviewers to view all user requirements in a read-only mode.

o Reviewers can access and review requirements without modifying them.

3.2.3. System Requirements Management

FR 3.1:

• The system shall allow system engineers to create new system requirements.

FR 3.2:

• The system shall automatically generate a unique identifier for each system requirement

based on its type (e.g., SR-001).

o This facilitates easy reference and management of requirements.

FR 3.3:

• The system shall allow system engineers to input input text, numerical values and dates

for the system requirement.

FR 3.4:

• The system shall allow system engineers to use embedded images within system

requirements.

o Ensures detailed technical specifications can be documented.

29

FR 3.5:

• The system shall allow system engineers to assign each system requirement to a specific

attribute.

o Helps in better definition and understanding of requirements.

FR 3.6:

• The system shall validate required field before saving a new system requirement.

o Mandatory field include User requirement link.

FR 3.7:

• The system shall allow reviewers to view all system requirements in a read-only mode.

o Reviewers can access and review requirements without modifying them.

3.2.4. Subheading Requirements Management

FR 4.1:

• The system shall allow system engineers to divide system requirements into

subheadings, such as Functional Requirements, Non-Functional Requirements.

o Provides better organization and clarity by categorizing requirements under

appropriate subheadings.

FR 4.2:

• The system shall allow system engineers to create new subheading requirements.

FR 4.3:

• The system shall require system engineers to select whether a subheading requirement

is functional or non-functional during creation.

o Ensures proper classification of subheading requirements for traceability and

organization.

FR 4.4:

• The system shall automatically generate a unique identifier for each subheading

requirement based on its type (e.g., FR-001, NFR-001).

o This facilitates easy reference and management of requirements.

FR 4.5:

• The system shall allow system engineers to manually input a header (e.g., Hardware,

Interface) for the subheading requirement after classification.

o Provides flexibility for system engineers to define relevant headers based on the

requirement context.

o The system shall allow system engineers to leave the header field empty.

FR 4.6:

• The system shall allow system engineers to input input text, numerical values and dates

for the subheading requirement.

30

FR 4.7:

• The system shall allow system engineers to use embedded images within subheading

requirements.

o Ensures detailed technical specifications can be documented.

FR 4.8:

• The system shall allow subheading requirements to be linked to their parent system

requirements.

o Links between subheading and system requirements provide traceability and

context.

FR 4.9:

• The system shall allow system engineers to assign each subheading requirement to a

specific attribute.

o Helps in better definition and understanding of requirements.

FR 4.10:

• The system shall validate required field before saving a new subheading requirement.

o Mandatory field include system requirement link.

FR 4.11:

• The system shall allow reviewers to view all subheading requirements in a read-only

mode.

o Reviewers can access and review requirements without modifying them.

3.2.5. Traceability Requirements

FR 5.1:

• The system shall allow system engineers to create bi-directional links between user

requirements and system requirements.

o Users can trace from user requirements to system requirements and vice versa.

FR 5.2:

• The system shall allow system engineers to create bi-directional links between system

requirements and subheading requirements.

o Users can trace from system requirements to subheading requirements and vice

versa.

FR 5.3:

• The system shall display an impact analysis when a requirement is linked or unlinked.

o Shows how changes affect related requirements.

FR 5.4:

• The system shall allow users to filter requirements based on their traceability status

(e.g., linked or unlinked).

o Helps identify orphaned, missing or unlinked requirements.

31

3.2.6. Change Management Requirements

FR 6.1:

• The system shall allow system engineers to edit existing requirements.

o System engineers with appropriate permissions can modify requirement details

such as description, priority, and attributes.

FR 6.2:

• The system shall allow system engineers to delete existing requirements.

o Deletion shall require confirmation and appropriate permissions by admin to

prevent accidental removal.

FR 6.3:

• The system shall maintain a detailed history of every change, including edits and

deletions, for each requirement.

o The history log shall include the user who made the change, timestamp, and a

summary of the modification.

FR 6.4:

• The system shall display a yellow colored star icon next to a requirement that has been

edited but not yet reviewed.

o The special indicates that the requirement needs stakeholder review.

FR 6.5:

• The system shall display a red colored star icon on all related requirements when a

linked requirement is edited or deleted.

o Ensures stakeholders are aware of potential impacts on related requirements.

FR 6.6:

• The system shall provide a "Clear Suspicion" button to remove the special star icon once

the changes have been reviewed and acknowledged.

o Allows users to mark changes as reviewed and finalize the requirement.

FR 6.7:

• The system shall provide an option to recover or revert a deleted requirement from the

history log.

o Helps recover accidentally deleted requirements or review historical data.

FR 6.8:

• The system shall track changes made to images within a requirement.

o History logs should include changes to visual elements.

32

3.2.7. Release Requirements

FR 7.1:

• The system shall allow admin to create a baseline of the entire project.

o A baseline will serve as a frozen version of the requirements at a specific point

in time.

FR 7.2:

• The system shall provide versioning for baselines, allowing multiple baselines to be

created and stored.

o Each baseline will be assigned a unique version identifier for easy tracking and

comparison.

FR 7.3:

• The system shall display to users for comparing baselines to identify changes between

versions.

o Requirements releases will be displayed together column by column for easy

comparison.

FR 7.4:

• The system shall allow admin to delete obsolete baselines after proper review.

o Baselines that are no longer needed can be removed to optimize storage space.

3.2.8. Reporting Requirements

FR 8.1:

• The system shall allow users to export user system and subheading requirements in a

hierarchical structure.

o Ensures that requirements are exported with their relationships intact, displaying

parent-child links.

FR 8.2:

• The system shall provide users with the option to export requirements in either a

Document, Table, or Book format.

o Users can choose the format that best suits their reporting needs:

▪ Document: Requirements are presented in a narrative format.

▪ Table: Requirements are presented in a tabular format with rows and

columns.

▪ Book: Requirements are grouped into chapters or sections for structured

documentation.

FR 8.3:

• The system shall allow users to export requirements to MS Word format.

o Supports the creation of professional, editable documents.

33

FR 8.4:

• The system shall allow users to export requirements to PDF format.

o Ensures that requirements can be shared as read-only, professional reports.

FR 8.5:

• The system shall preserve the hierarchical structure of requirements in both Word and

PDF exports.

o Ensures that parent-child relationships are clearly indicated in exported

documents.

FR 8.6:

• The system shall allow users to select which requirements (user, system or subheading)

to export.

o Users can choose to export only user requirements, only system requirements,

or both.

FR 8.7:

• The system shall provide a preview option before exporting the document.

o Users can review the export before generating the final file to ensure accuracy.

FR 8.8:

• The system shall allow users to export visual elements (images) along with text in the

exported document.

o Ensures that all embedded visual elements are included in the final report.

3.2.9. Database Requirements

FR 9.1:

• The system shall allow system engineers and admins to save all modules to the

PostgreSQL database.

o Ensures that all modules(user, system and subheading requirements) are

securely stored and accessible for future reference.

FR 9.2:

• The system shall store a history of all changes made to requirements, including

timestamps and user details, in PostgreSQL.

o Provides traceability and accountability for all modifications.

FR 9.3:

• The system shall allow admins to save all baselines to the PostgreSQL database.

o Enables secure storage of baseline configurations for version control and

traceability.

34

3.3. Non-Functional Requirements

3.3.1. Performance

NFR 1.1:

• The system shall provide a response time of less than 2 seconds for all database queries

involving requirements retrieval.

o Ensures that users experience minimal delays when interacting with the system.

NFR 1.2:

• The system shall save all modules(user, system and subheading requirements) to the

PostgreSQL database within 5 seconds for projects containing up to 1000 requirements.

o Provides efficient storage of entire modules, even for large projects.

NFR 1.3:

• The system shall save baselines to the PostgreSQL database within 5 seconds for

projects.

o Ensures quick and reliable saving of baseline configurations for version control

and traceability.

NFR 1.4:

• The system shall generate reports in less than 10 seconds for projects containing up to

1000 requirements.

o Ensures efficient report generation for large projects.

3.3.2. Security

NFR 2.1:

• The system shall use API Gateway to manage and secure all authentication and

authorization requests via REST APIs.

NFR 2.2:

• The system shall integrate with Keycloak to handle identity and access management,

supporting role-based access control (RBAC) for Admin, System Engineer, and

Reviewer roles.

NFR 2.3:

• The PostgreSQL database shall encrypt data at rest using AES-256 symmetric

encryption to ensure data confidentiality.

NFR 2.4:

• The PostgreSQL database shall use TLS 1.3 to encrypt data in transit between the

database and the application.

35

3.3.3. Reliability

NFR 3.1:

• The system shall be available 99.9% of the time, excluding scheduled maintenance

periods.

o Guarantees high availability to minimize downtime.

NFR 3.2:

• The system shall use Netflix Eureka to dynamically reroute traffic to healthy

microservices during failures or downtime.

NFR 3.3:

• The system shall use write-ahead logging (WAL) for PostgreSQL to ensure data

durability and recoverability in case of a crash.

 3.3.4. Usability

NFR 4.1:

• The system shall provide an intuitive user interface (UI) that allows users to create, edit,

link, and review requirements with minimal training.

NFR 4.2:

• The system shall support keyboard shortcuts for common actions such as saving,

editing, and navigating between requirements.

NFR 4.3:

• The system shall ensure that all actions (e.g., saving, linking, or exporting) are

performed with a maximum of four clicks.

NFR 4.4:

• The system shall display error messages in plain language, providing clear instructions

on how to resolve the issue.

3.3.5. Maintainability

NFR 5.1:

• The system shall support the seamless addition or removal of microservices without

disrupting other services, utilizing Netflix Eureka for dynamic service discovery and

communication.

NFR 5.2:

• The system shall ensure that all microservices are independently deployable and

maintainable.

36

3.4. Use Cases

Figure 1- Use Case-1

UC-1.1: Log In

Description: Users must log in with a role-based account to access the system.

Actors: Admin, System Engineer, Reviewer

Preconditions: Valid username and password input.

Postconditions: User enters to the system.

UC-1.2: Assign Role

Description: The system shall allow admins to assign user roles (Admin, System Engineer,

Reviewer) during user registration.

Actors: Admin

Preconditions: Must login to the system as Admin role.

Postconditions: Role assignes to the target user.

37

Figure 2 Use Case-2

UC-2.1: Create New Requirement to a Spesific Requirement Module

Description: The system shall allow system engineers to create new user or system

requirement to relevant requirement module.

Actors: Admin, System Engineer

Preconditions: Input text or image format data for attributes.

Postconditions: Check links to other requirement module types and genereate a unique

identifier to created requirement.

UC-2.2: Create New Subheading to a Requirement Module

Description: The system shall allow system engineers to divide system requirements into

subheadings, such as Functional Requirements, Non-Functional Requirements.

Actors: Admin, System Engineer

38

Preconditions: Input text or image format data for attributes. Or input a header (e.g.,

Hardware, Interface) for the subheading requirement after classification.

Postconditions: Check links to the parent requirement module and genereate a unique

identifier to created subheading.

UC-2.3: Assign Attribute to a Requirement

Description: The system shall allow system engineers to assign each requirement to a

specific attribute.

Actors: Admin, System Engineer

Preconditions: Requirement must be defined already.

Postconditions: The system adds new attribute to requirement as a column.

UC-2.4: Underline or Make Bold

Description: The system shall allow system engineers to underline important points and

bold text when needed.

Actors: Admin, System Engineer

Preconditions: Requirement must be defined already.

Postconditions: The system underlines or applies bold in selected parts on a requirement.

UC-2.5: View Requirements in a Module or Subheading

Description: The system shall allow reviewers to view all user requirements in a read-only

mode.

Actors: Admin, System Engineer, Reviewer

Preconditions: Requirements must be defined already.

Postconditions: Reviewers accesses and reviews requirements without modifying them.

39

Figure 3 Use Case-3

UC-3.1: Create Bi-Directional Link Between User And System Requirements

Description: The system shall allow system engineers to create bi-directional links between

different modules.

Actors: Admin, System Engineer

Preconditions: Requirements must be defined already.

Postconditions: The system shall display an impact analysis when a requirement is linked

or unlinked.

UC-3.2: Filter Requirements

Description: The system shall allow users to filter requirements based on their traceability

status (e.g., linked or unlinked).

Actors: Admin, System Engineer, Reviewer

Preconditions: Requirements must be defined already.

Postconditions: The system applies filter to analysis.

40

Figure 4 Use Case-4

UC-4.1: Edit Requirement

Description: The system shall allow system engineers to edit existing requirements.

Actors: Admin, System Engineer

Preconditions: Requirement must be defined already.

Postconditions: The system writes change to the history log and to display suspicion, marks

relevant requirements with colored stars. Also can be undone.

UC-4.2: Delete Requirement

Description: The system shall allow system engineers to delete existing requirements.

Actors: Admin, System Engineer

Preconditions: Requirement must be defined already.

Postconditions: The system writes deletion to the history log and to display suspicion,

marks relevant requirements with colored stars. Also deleted requirement can be recovered.

41

Figure 5 Use Case-5

UC-5.1: Create Baseline

Description: The system shall allow admin to create a frozen version of the requirements

at a specific point in time of the entire project.

Actors: Admin

Preconditions: Must login to the system as Admin role.

Postconditions: The system shall provide versioning for baselines, allowing multiple

baselines to be created and stored.

UC-5.2: Delete a Baseline

Description: The system shall allow admin to delete obsolete baselines after proper review.

Actors: Admin

Preconditions: Must login to the system as Admin role.

Postconditions: Selected baselines will be removed from storage.

UC-5.3: Display Baseline

Description: The system shall display to users for comparing baselines to identify changes

between versions.

Actors: Admin, System Engineer, Reviewer

Preconditions: Baseline must be created already.

Postconditions: Requirements releases will be displayed together column by column for

easy comparison.

42

Figure 6 Use Case-6

UC-6.1: Export Requirements

Description: The system shall allow users to export requirement modules in a hierarchical

structure.

Actors: Admin, System Engineer, Reviewer

Preconditions: The system allows user to select requirement module and export format.

Also, provide a preview option before exporting the document.

Postconditions: The system exports selected modules as MS Word format.

43

Figure 7 Use Case-7

UC-7.1: Store Requirement Modules to Database

Description: The system shall allow system engineers and admins to save all modules to

the PostgreSQL database.

Actors: Admin, System Engineer

Preconditions: Must login to the system as Admin or System Engineer role.

Postconditions: Ensures that all modules (user, system and subheading requirements) are

securely stored and accessible for future reference.

UC-7.2: Store Baselines to Database

Description: The system shall allow admins to save all baselines to the PostgreSQL

database.

Actors: Admin, System Engineer

Preconditions: Must login to the system as Admin role.

Postconditions: Enables secure storage of baseline configurations for version control and

traceability.

3.5. System Attributes
3.5.1. Portability

• The CSEK Requirements Management System has been developed as a web-based

application and is optimized to work in modern browsers.

• The system works in a way that is compatible with any operating system, as only one

browser is required.

3.5.2. Performance

• Requirements queries and database operations should be completed in maximum 2

seconds.

• Reporting processes are optimized to take a maximum of 10 seconds for projects with

1000 requirements.

• Writing to the system database should take a maximum of 5 seconds.

44

3.5.3. Usability

• The user interface is designed to make the system easy to learn and use.

• The system allows users to create, edit and delete requirements with a maximum of 4

clicks.

• As a result of incorrect operations, the user is presented with clear error messages and

suggested solutions.

• The system menu allows users to easily navigate between requirements, reports and

historical records.

3.5.4. Adaptability

• The system includes modules that can be adapted to different user needs.

• Microservice architecture is used to add new features or functionalities in the future.

• No adaptation of existing data is required because the system focuses only on static data

management.

 3.5.5. Scalability

• The system is designed to support up to 500 simultaneous users.

• When more user load is required, it can be easily scaled using the system's cloud-based

infrastructure.

• However, the system does not require scalability for tasks configured to be accessed by

a single user (e.g. individual reporting).

4.Supporting Information
4.1. Change Log

At the beginning of the project, we thought of integrating artificial intelligence

technology while planning. thanks to artificial intelligence technology, system requirements

would be generated from user requirements. Then, considering the technologies to be used and

the legal parts, we removed the artificial intelligence integration part from our project. The

reasons for this are that we do not have a dataset that can train the artificial intelligence model

in this regard, which is a limitation for us in the software part. At this point, finding companies

dataset is a legal constraint.

45

SOFTWARE DESING DOCUMENT

1. Introduction
1.1. Purpose

The purpose of this document is to provide a detailed overview of the

design of the CSEK Requirements Management System. This document forms

the basis for the design of the system, which aims to meet the functional and

technical requirements of the project and optimize the requirements management

processes of users in various sectors.

The system aims to provide a cost-effective, customizable alternative to

existing tools with high licensing costs, such as IBM Doors. The system must be

designed to make it easy to monitor the impact of requirements on each other

through bidirectional traceability. The rolebased access feature shall allow users

to access only the features that they are authorized to access. In this manner, the

system shall increase data security and minimize possible user errors. Also, the

system shall be designed to provide simultaneous access for up to 500 users. The

cloud-based structure must ensure scalability and create a suitable architecture for

future expansions.

The project must be developed under national security standards to

address the needs of different industries. In addition to satisfying security needs,

this design shall allow requirements processes to be more organized and efficient.

Users can easily create, track, edit, and report requirements. The system also must

allow the creation of professional reports from requirements with export options

in MS Word and PDF formats.

The design aims to ensure that the system is sustainable and developable

in the long term by focusing on future expandability goals. The microservice

architecture must facilitate adding new features and making changes to the

system. This adaptive methodology must facilitate project sustainability and

industrial adaptation.

This document for designing the CSEK Requirements Management

System is a guide and reference for software engineers, project managers, and

other stakeholders. It aims to help the project team achieve its goals by

exhaustively discussing all technical and architectural aspects of the system

design. This document provides the necessary technical infrastructure for the

project's successful execution.

1.2. Scope
The CSEK Requirements Management System must be designed to

provide a robust, safe, and cost-effective solution that can be used in various

industries. This system must offer a localized, accessible alternative by addressing

the usage challenges of existing requirements management tools such as IBM

Doors.

 The system must provide a comprehensive tool for managing user, system, and

subheading requirements. It must allow users to perform basic tasks such as

creating, editing, categorizing, and monitoring requirements. It must also allow

users to benefit from advanced features such as bidirectional traceability, which

46

shall provide users with an understanding of how requirements affect each other.

The system must also secure data with role-based access control.
The platform must be web-based and designed to run on browsers. This

must allow the system to be accessible from anywhere with an internet

connection. The system must adopt a modular microservice architecture and use

advanced technologies such as Netflix Eureka for dynamic service discovery,

Kafka for event-driven communication, and gRPC for inter-service

communication. This architectural approach must ensure the system is highly

scalable, adaptable, and future-proof.

The system must store data securely in the PostgreSQL database. Redis

must be integrated to increase system performance and reduce database load.

With Redis, frequently accessed data must be cached. The system must encrypt

data at rest using AES-256 and data in transit using TLS 1.3 to ensure data

security. This must protect sensitive information.

In terms of performance, the system must be optimized to support up to

500 concurrent users to satisfy the needs of organizations of different sizes. The

system's cloud-based infrastructure must enable it to cater to requirements and

users as they grow. Reporting features must also be important, allowing users to

export their requirements in MS Word and PDF while maintaining their

hierarchical structure. This feature must support the creation of professional

documentation.

The CSEK Requirements Management System must be designed by

national security standards and provide an ideal option for various sectors. The

system must focus on sustainability and adaptability, allowing for future

improvements. Features such as adding additional formats to the reporting

section, generating system requirements from user requirements by integrating

artificial intelligence technology, allowing the user to enter requirements tests,

and allowing the administrator to assign tasks to users must be left open for future

development. Although these and similar features must be not included in the

initial design, they can be added during the development phase without problems

using the microservice architecture.

CSEK Requirements Management System must enable organizations to

manage their requirements more efficiently, reliably, and customizable by

providing a requirements management platform that is secure, scalable, and

customizable to user needs. Addressing both technical and operational

challenges must enable organizations to manage their requirements in a more

efficient, reliable, and customizable way.

1.3. Glossary

● AES-256

Advanced Encryption Standard with a 256-bit key length, used for

securing data at rest.

● API Gateway

A centralized entry point that routes user requests to various

microservices, typically using REST protocols.

47

● Bidirectional Traceability

A system feature that allows tracking of how requirements impact each

other.

● Keycloak

An open-source software solution for managing authentication and

authorization processes.

● Microservice Architecture

A software development architecture where an application is divided

into independently deployable and manageable small services.

● Role-Based Access Control (RBAC)

An access control mechanism where permissions are granted based on

user roles.

● TLS1.3

The latest version of the Transport Layer Security protocol ensures

encrypted data transmission.

● Snapshot

A saved state of a system at a specific point in time, is often used for

backup and version control.

1.4. Overview of Document

 This document is provided as a Software Design Document for the CSEK

Software Requirements Management System. The system must be designed to

develop a local requirements management tool for various sectors. The system

must aim to address challenges such as the high licensing costs of existing tools,

local compatibility issues, and limited customization options. In this context, the

project must offer a secure and scalable solution that is both cost-effective and

suitable for user needs.

 This document describes the software design of the CSEK Requirements

Management System comprehensively. The document details the architectural

structure, design principles, modular approach and technologies to be used. The

project must be developed using microservices architecture and optimized to

satisfy security and performance requirements. The system must be designed to

appeal to various organizations, with a user-friendly interface and robust data

management features.

 The main design objectives of the system include providing bi-directional

traceability of user requirements, increasing the level of security with role-based

access control, and providing detailed reporting features. The system, supported

by technologies such as PostgreSQL database, Redis caching mechanism, and

Kafka, must be structured to provide high performance and data security.

 This document aims to give software engineers, project managers, and other

stakeholders a clear understanding of the project's design and to provide guidance

at each stage of the software development process. Readers can find the overall

architecture of the system, its technical components, and the motivations

underlying the design decisions in this document.

48

Introduction part describes the purpose of the document and the objectives

of the system. The Design Approach section summarizes the methods, steps and

general approaches used in the design process. The Architectural Design section

describes the microservice architecture of the system, the technological

infrastructure and the tools used. In the User Interface section, the interface that

the user will encounter is visualized and explained.

1.5. Motivation

 We are a group of senior computer engineering students who aim to develop a

requirements management tool for various industries. As a group, we wanted to

be interested in a field that would provide us with more sectoral knowledge,

develop us using different technologies, and fill a gap in the industries.

 The main motivation for developing the CSEK Requirements Management

System is to address problems arising from the high cost and unsuitability of

existing requirements management tools for local needs in various industries.

This project aims to improve users' requirements management processes,

increase traceability of changes, and improve operational efficiency. The

motivation behind the project is to create sustainable value in various industries

by providing an innovative and accessible solution to technical and operational

challenges. As a team, since we are not very familiar with the technologies we

will use in our project, we plan to go through a process in which we can

progress by working to learn these technologies and getting the necessary

support. In this way, we plan both to manage the project process healthily and to

improve ourselves in these contexts.

2. Architecture Design
2.1. Design Approach

 The design approach of the CSEK Requirements Management System includes

several steps to manage the software development process in an organized way.

This approach aims to satisfy both technical and operational needs, providing a

flexible structure for future development and extensions. The design process

includes the following steps:

1. Literature Review: At the beginning of the project, a literature review

was conducted to research the field and examine existing studies. In

this context, the shortcomings of the existing studies and the aspects

that could be improved were observed. In addition, the key features of

our project were better recognized.

2. Requirements Gathering: This phase enabled the identification of user

needs and requirements. This process focused on addressing the needs

of a requirements management tool that could be used in various

sectors. The needs of the user roles were analyzed separately. Features

49

such as bi-directional traceability, customizable reporting, and role-

based access control were included in the project.

3. Software Architecture Design: Microservice architecture must be

preferred as it is thought to be suitable for the requirements of the

project. Each module must be designed as an independent service and

Netflix Eureka, gRPC and Kafka must be used for interaction between

them. This structure must increase the modularity of the system,

facilitating both maintenance and extensibility.

4. Database Design: Data security and accessibility must be one of the

important points in system design. A secure and scalable database

infrastructure must be built using PostgreSQL. All requirements and

user data must be stored securely in this database. Performance

optimization must be ensured by using Redis for frequently accessing

data. Also, data must be encrypted with AES-256 encryption at rest

and TLS 1.3 protocol during transmission.

5. Performance Design: The system must be designed to meet

performance needs with a cloud-based architecture. This must ensure

scalability and high performance. In addition, it must be optimized to

support 500 users simultaneously

6. User-Friendly Interface and Web-Based Design: The system must be

designed with a user-friendly interface for administrators, system

engineers and reviewers. The web-based structure must provide a high

accessibility design that can be accessed from browsers.

7. Future Expandability: The system must be designed with a flexible

architecture so that new features can be easily integrated. Future

development steps may include AI-based requirements generation,

more advanced reporting options, and different integration features.

 CSEK's Requirements Management System must use this approach to

deliver a design that is high-performing and tailored to the user's needs.

50

2.2. Class Diagram

51

This diagram illustrates the structure and interaction of various

components within a CSEK Requirement Management System’s architecture

designed for managing requirements and snapshots, using modern

communication and service technologies. It includes a User entity with

authentication and authorization managed by AuthenticationService (Keycloak).

ServiceDiscovery (Netflix Eureka) handles service registration and discovery.

The system incorporates synchronous communication through gRPC and

asynchronous communication via Kafka. Core modules like UserRequirements,

SystemRequirements, and

SubheadingRequirements manage hierarchical requirement relationships,

enabling creation, editing, deletion, and linking functionalities. The HistoryLog

tracks changes, while Baseline and snapshotService focus on capturing and

managing system snapshots stored in snapshot storage (e.g., AWS). Additionally,

DatabaseService (PostgreSQL) provides CRUD operations, and

ReportingService generates and exports reports.

2.3. ARCHITECTURAL DESIGN

• 2.3.1. Overview

The system uses a microservices architecture. This guarantees

scalability. Maintenance and use of independent services Each microservice is

designed according to clean architecture principles. It focuses on separating

concerns. It provides a clear boundary between core business logic and external

dependencies. The system is implemented on Kotlin and uses the Spring Boot

framework, leveraging modern tools for caching, communication, and

authentication.

• 2.3.2. Technology Stack

Programming Language: Kotlin

Framework: Spring Boot

Database: PostgreSQL (for requirements and user data storage)

Caching: Redis (for improving performance) Service

Communication:

gRPC: For synchronous communication among User

Requirements, the System Requirements, and Subheading

Requirements services.

Kafka: For asynchronous communication between Requirements

Microservices and Snapshot Service.

Service Discovery: Netflix Eureka (to manage microservices and their

dynamic locations).

Authentication & Authorization: Keycloak integrated via a REST API

Gateway.

Snapshot Storage: Snapshots are stored in a cloud storage solution (e.g.,

AWS).

52

• 2.3.3. Microservices

1. User Requirement Service

Handles operations related to user requirements. Communicates with

other requirement services via gRPC, and communicates with snapshot

service via Kafka.

2. System Requirement Service

Manages system requirements and links to user requirements.

Communicates with

other requirement services via gRPC, and communicates with snapshot

service via Kafka.

3. Subheading Requirement Service

Manages subheading requirements and links to system requirements.

Communicates with other requirement services via gRPC, and

communicates with snapshot service via Kafka.

4. Snapshot Service

Stores snapshots in cloud storage and interacts with requirements

services for versioning using Kafka.

5. Reporting Service

Generates reports by retrieving data from the snapshot storage.

• 2.3.4. Clean Architecture Diagram

53

1. Presentation Layer: This is the layer where users interact with the system

through interfaces like a web application or API.

2. Application Layer: Manages the application's use cases by coordinating

between the Presentation Layer and the Domain Layer. It handles the business

process logic but does not include detailed business rules.

3. Domain Layer: Contains the core business logic and rules of the

application, independent of external systems or technologies.

4. Infrastructure Layer: Provides technical details and implementations that

support the application but are not part of the core business logic.

• 2.3.5. Service Communication

1. API Gateway (REST):

• Centralized entry point for the application, handling user requests through

RESTful communication and routing them to appropriate microservices.

• Integrated with Keycloak for user authentication and authorization using

REST protocols.

2. gRPC:

• Facilitates synchronous communication among the User Requirements,

System Requirements, and Subheading Requirements services to ensure

efficient data exchange.

3. Kafka:

• Manages asynchronous messaging between Requirements

Microservices and the Snapshot Service, ensuring reliability in data

exchange.

4. Redis:

• Acts as a caching layer to optimize database queries and improve

overall system performance. 5. Netflix Eureka:

• Provides service discovery, allowing microservices to locate and

communicate with each other dynamically.

54

2.4. Activity Diagram

55

Figure is an activity diagram illustrating how our program operates in a

scenario where a user logs into the program, performs an operation, and then logs

out. When a user successfully logs in, their role is checked. If the user's role does

not have permission to access the desired operation, access is denied. While users

with the Admin role have access to all operations, the access for System Engineer

and Reviewer roles is more restricted. The Reviewer can only perform view

operations on existing items in the system, whereas the System Engineer can also

make modifications related to requirements in addition to the Reviewer’s

capabilities.

56

2.5. Sequence Diagram

57

The sequence diagram in Figure outlines the interaction between a user

and the system, beginning with a login request where the entered username and

password are validated against the database. Upon successful authentication, the

system retrieves the user's role to determine access rights. Users with the "Admin"

role can assign roles, manipulate baselines, and store them in the database, while

both "Admin" and "System Engineer" roles can manipulate requirements and

store requirement modules. Users without the necessary roles are restricted from

performing these operations. Additionally, all users can view data stored in the

system.

58

3.User Interface Design

On this page User Reqiurements are displayed in a sequential order.

59

System requirements can be seen with the Select Module option

60

61

From the right-click menu, the user can specify where the requirement comes

from and where it will go.

 Tracebility can be done with the Show Connections option.

62

63

64

 New Column option creates a new column with the entered title.

65

By pressing the + key, the rows in the forming column can be filled.

66

Changes made can be checked with the Changes option.

67

With the Baseline option, previous records are displayed and the current

situation can be compared with the desired past record.

68

69

The + sign above the requirements allows a new requirement to be added

to the desired line.

70

CONCLUSION

CSEK Requirements Management System has been developed as a local, cost-effective,

customizable requirements management tool. Designed to be built using different software

technologies, this tool provides an accessible and functional solution. It is aimed to localize

IBM DOORS, which is a frequently used tool in requirements management, and to avoid its

disadvantages.

Our project is planned to implement bidirectional traceability, role-based access control,

a user-friendly interface, and reporting features to improve the requirements management

process. In addition, the fact that the system provides a secure structure must ensure increased

usability in various sectors.

According to this report, the system is designed to allow users to manage requirements

in an efficient manner. In addition, the system is intended to be open to future development and

improvements using a microservice architecture.

 As a result, the CSEK Requirements Management System should provide a solution that

is effective in software development processes and appropriate to user needs. It is aimed to

contribute to software development processes in various industries as a sustainable and

developable system in the long term.

71

REFERENCES

[1] Aragon, K. M., Eaton, S. M., McCornack, M. T., Shannon, S. A., & Sandia National Laboratories.

(2014). Generalized information Architecture for managing requirements in IBM’s Rational

DOORS® application. In SANDIA REPORT (No. SAND2014-20563). Sandia National Laboratories.

http://www.osti.gov/bridge

[2] Kuutti, T. (2019). Comparing Requirements Management Tools – IBM Rational DOORS & HP

ALM. In Metropolia University of Applied Sciences, Metropolia University of Applied Sciences.

[3] Al-Hroob, A., Imam, A. T., & Al-Heisa, R. (2018). The use of artificial neural networks for

extracting actions and actors from requirements document. Information and Software

Technology, 101, 1–15. https://doi.org/10.1016/j.infsof.2018.04.010

[4] Hoffmann, M., Kühn, N., Weber, M., DaimlerChrysler AG Research & Technology, Bittner, M.,

& TU Berlin, Fak. IV, ISTI, SWT. (2004). Requirements for Requirements Management Tools. In

Proceedings of the 12th IEEE International Requirements Engineering Conference (RE’04) (pp.

1090-705X) [Conference-proceeding]. IEEE.

[5] Verma, K., Kass, A., & Accenture Technology Labs. (2008). Requirements Analysis Tool: A Tool

for Automatically Analyzing Software Requirements Documents. In ISWC 2008 (Vol. 5318, pp.

751–763) [Journal-article]. Springer-Verlag Berlin Heidelberg.

[6] Sajad, M., Sadiq, M., CRIDS (Center for Research in Distributed and Supercomputing) RIU,

Naveed, K., Iqbal, M. S., CRIDS (Center for Research in Distributed and Supercomputing) RIU,

& School of Computer Science, Anhui University, Hefei, China. (2016). Software Project

Management: Tools assessment, Comparison and suggestions for future development. In

IJCSNS International Journal of Computer Science and Network Security (pp. 31–32).

[7] draw.io - free flowchart maker and diagrams online. (n.d.). https://app.diagrams.net/

[8] Engineering Requirements Management DOORS. (n.d.).

https://www.ibm.com/docs/en/engineering-lifecycle-

managementsuite/doors/9.7.0?topic=overview

[9] Kafka Nedir? - Apache Kafka’ya Ayrıntılı Bakış - AWS. (n.d.). Amazon Web

Services, Inc. https://aws.amazon.com/tr/what-is/apache-kafka/

[10] Marcelo, & Marcelo. (2024, October 6). IBM Rational DOORS Yazılımına Genel

Bakış | Eksiksiz Kılavuz. Visure Solutions.

https://visuresolutions.com/tr/ibm- kap%C4%B1lark%C4%B1lavuzu/

[11] gRPC. (n.d.). gRPC. https://grpc.io/

https://app.diagrams.net/
https://app.diagrams.net/
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.7.0?topic=overview-doors
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.7.0?topic=overview-doors
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.7.0?topic=overview-doors
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.7.0?topic=overview-doors
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.7.0?topic=overview-doors
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.7.0?topic=overview-doors
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.7.0?topic=overview-doors
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.7.0?topic=overview-doors
https://aws.amazon.com/tr/what-is/apache-kafka/
https://aws.amazon.com/tr/what-is/apache-kafka/
https://aws.amazon.com/tr/what-is/apache-kafka/
https://aws.amazon.com/tr/what-is/apache-kafka/
https://aws.amazon.com/tr/what-is/apache-kafka/
https://aws.amazon.com/tr/what-is/apache-kafka/
https://visuresolutions.com/tr/ibm
https://visuresolutions.com/tr/ibm-kap%C4%B1lar-k%C4%B1lavuzu/
https://visuresolutions.com/tr/ibm-kap%C4%B1lar-k%C4%B1lavuzu/
https://visuresolutions.com/tr/ibm-kap%C4%B1lar-k%C4%B1lavuzu/
https://grpc.io/
https://grpc.io/

72

[12] https://medium.com/devopsturkiye/redis-nedir-ne-i%CC%87%C5%9Fe-

yarar1a19ebbdb2b4

[13] Rules to clean architecture. (n.d.).

https://www.ssw.com.au/rules/rules-to-better-cleanarchitecture/.

[14] UML Class Diagram Tutorial. (n.d.).

https://www.visual-paradigm.com/guide/umlunified-modeling-language/uml-

class-diagram-tutorial/

[15] https://www.canva.com/

[16] How to Write a Software Design Document (SDD). (n.d.).

https://www.nuclino.com/articles/software-design-document

https://medium.com/devopsturkiye/redis-nedir-ne-i%CC%87%C5%9Fe-yarar1a19ebbdb2b4
https://medium.com/devopsturkiye/redis-nedir-ne-i%CC%87%C5%9Fe-yarar1a19ebbdb2b4
https://www.ssw.com.au/rules/rules
https://www.ssw.com.au/rules/rules-to-better-clean-architecture/
https://www.ssw.com.au/rules/rules-to-better-clean-architecture/
https://www.ssw.com.au/rules/rules-to-better-clean-architecture/
https://www.ssw.com.au/rules/rules-to-better-clean-architecture/
https://www.ssw.com.au/rules/rules-to-better-clean-architecture/
https://www.ssw.com.au/rules/rules-to-better-clean-architecture/
https://www.ssw.com.au/rules/rules-to-better-clean-architecture/
https://www.ssw.com.au/rules/rules-to-better-clean-architecture/
https://www.visual-paradigm.com/guide/umlunified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/umlunified-modeling-language/uml-class-diagram-tutorial/
https://www.canva.com/
https://www.canva.com/
https://www.nuclino.com/articles/software-design-document

