
CANKAYA UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

SOFTWARE DESIGN

DOCUMENT

CSEK REQUIREMENTS MANAGEMENT SYSTEM

KIVILCIM IŞIK 202011006

ERAY EMİR 202011016

SARPER ERBAR 202011001

CAN METE BOZAR 202011052

2

1. INTRODUCTİON .. 3

1.1. PURPOSE ... 3
1.2. SCOPE .. 3
1.3. GLOSSARY ... 4
1.4. OVERVİEW OF DOCUMENT ... 5
1.5. MOTİVATİON ... 6

2. ARCHİTECTURE DESİGN ... 6

2.1. DESİGN APPROACH .. 6
2.2. CLASS DİAGRAM .. 8
2.3. ARCHITECTURAL DESIGN .. 9

2.3.1.Overview .. 9
2.3.3.Microservices ... 9
2.3.4.Clean Architecture Diagram .. 10

2.4. ACTİVİTY DİAGRAM ... 12
2.5. SEQUENCE DİAGRAM .. 14

3. USER INTERFACE DESİGN ... 16

4. REFERENCES .. 28

3

1. Introduction

1.1. Purpose
The purpose of this document is to provide a detailed overview of the design of the

CSEK Requirements Management System. This document forms the basis for the design of the
system, which aims to meet the functional and technical requirements of the project and
optimize the requirements management processes of users in various sectors.

The system aims to provide a cost-effective, customizable alternative to existing tools
with high licensing costs, such as IBM Doors. The system must be designed to make it easy to
monitor the impact of requirements on each other through bidirectional traceability. The role-
based access feature shall allow users to access only the features that they are authorized to
access. In this manner, the system shall increase data security and minimize possible user
errors. Also, the system shall be designed to provide simultaneous access for up to 500 users.
The cloud-based structure must ensure scalability and create a suitable architecture for future
expansions.

The project must be developed under national security standards to address the needs
of different industries. In addition to satisfying security needs, this design shall allow
requirements processes to be more organized and efficient. Users can easily create, track, edit,
and report requirements. The system also must allow the creation of professional reports from
requirements with export options in MS Word and PDF formats.

The design aims to ensure that the system is sustainable and developable in the long
term by focusing on future expandability goals. The microservice architecture must facilitate
adding new features and making changes to the system. This adaptive methodology must
facilitate project sustainability and industrial adaptation.

This document for designing the CSEK Requirements Management System is a guide
and reference for software engineers, project managers, and other stakeholders. It aims to help
the project team achieve its goals by exhaustively discussing all technical and architectural
aspects of the system design. This document provides the necessary technical infrastructure for
the project's successful execution.

1.2. Scope
The CSEK Requirements Management System must be designed to provide a robust,

safe, and cost-effective solution that can be used in various industries. This system must offer
a localized, accessible alternative by addressing the usage challenges of existing requirements
management tools such as IBM Doors.
 The system must provide a comprehensive tool for managing user, system, and
subheading requirements. It must allow users to perform basic tasks such as creating, editing,
categorizing, and monitoring requirements. It must also allow users to benefit from advanced
features such as bidirectional traceability, which shall provide users with an understanding of
how requirements affect each other. The system must also secure data with role-based access
control.

4

The platform must be web-based and designed to run on browsers. This must allow
the system to be accessible from anywhere with an internet connection. The system must
adopt a modular microservice architecture and use advanced technologies such as Netflix
Eureka for dynamic service discovery, Kafka for event-driven communication, and gRPC for
inter-service communication. This architectural approach must ensure the system is highly
scalable, adaptable, and future-proof.

The system must store data securely in the PostgreSQL database. Redis must be
integrated to increase system performance and reduce database load. With Redis, frequently
accessed data must be cached. The system must encrypt data at rest using AES-256 and
data in transit using TLS 1.3 to ensure data security. This must protect sensitive information.

In terms of performance, the system must be optimized to support up to 500 concurrent
users to satisfy the needs of organizations of different sizes. The system's cloud-based
infrastructure must enable it to cater to requirements and users as they grow. Reporting
features must also be important, allowing users to export their requirements in MS Word and
PDF while maintaining their hierarchical structure. This feature must support the creation of
professional documentation.

The CSEK Requirements Management System must be designed by national security
standards and provide an ideal option for various sectors. The system must focus on
sustainability and adaptability, allowing for future improvements. Features such as adding
additional formats to the reporting section, generating system requirements from user
requirements by integrating artificial intelligence technology, allowing the user to enter
requirements tests, and allowing the administrator to assign tasks to users must be left open
for future development. Although these and similar features must be not included in the initial
design, they can be added during the development phase without problems using the
microservice architecture.

CSEK Requirements Management System must enable organizations to manage their
requirements more efficiently, reliably, and customizable by providing a requirements
management platform that is secure, scalable, and customizable to user needs. Addressing
both technical and operational challenges must enable organizations to manage their
requirements in a more efficient, reliable, and customizable way.

1.3. Glossary

● AES-256
Advanced Encryption Standard with a 256-bit key length, used for securing data at rest.

● API Gateway
A centralized entry point that routes user requests to various microservices, typically
using REST protocols.

● Bidirectional Traceability
A system feature that allows tracking of how requirements impact each other.

● Keycloak
An open-source software solution for managing authentication and authorization
processes.

5

● Microservice Architecture
A software development architecture where an application is divided into
independently deployable and manageable small services.

● Role-Based Access Control (RBAC)
An access control mechanism where permissions are granted based on user roles.

● TLS1.3
The latest version of the Transport Layer Security protocol ensures encrypted data
transmission.

● Snapshot
A saved state of a system at a specific point in time, is often used for backup and version
control.

1.4. Overview of Document

 This document is provided as a Software Design Document for the CSEK Software
Requirements Management System. The system must be designed to develop a local
requirements management tool for various sectors. The system must aim to address challenges
such as the high licensing costs of existing tools, local compatibility issues, and limited
customization options. In this context, the project must offer a secure and scalable solution that
is both cost-effective and suitable for user needs.
 This document describes the software design of the CSEK Requirements Management
System comprehensively. The document details the architectural structure, design principles,
modular approach and technologies to be used. The project must be developed using
microservices architecture and optimized to satisfy security and performance requirements.
The system must be designed to appeal to various organizations, with a user-friendly interface
and robust data management features.
 The main design objectives of the system include providing bi-directional traceability
of user requirements, increasing the level of security with role-based access control, and
providing detailed reporting features. The system, supported by technologies such as
PostgreSQL database, Redis caching mechanism, and Kafka, must be structured to provide
high performance and data security.
 This document aims to give software engineers, project managers, and other
stakeholders a clear understanding of the project's design and to provide guidance at each stage
of the software development process. Readers can find the overall architecture of the system,
its technical components, and the motivations underlying the design decisions in this document.

Introduction part describes the purpose of the document and the objectives of the
system. The Design Approach section summarizes the methods, steps and general approaches
used in the design process. The Architectural Design section describes the microservice
architecture of the system, the technological infrastructure and the tools used. In the User
Interface section, the interface that the user will encounter is visualized and explained.

6

1.5. Motivation

 We are a group of senior computer engineering students who aim to develop a
requirements management tool for various industries. As a group, we wanted to be interested
in a field that would provide us with more sectoral knowledge, develop us using different
technologies, and fill a gap in the industries.
 The main motivation for developing the CSEK Requirements Management System is
to address problems arising from the high cost and unsuitability of existing requirements
management tools for local needs in various industries. This project aims to improve users'
requirements management processes, increase traceability of changes, and improve operational
efficiency. The motivation behind the project is to create sustainable value in various industries
by providing an innovative and accessible solution to technical and operational challenges.
 As a team, since we are not very familiar with the technologies we will use in our
project, we plan to go through a process in which we can progress by working to learn these
technologies and getting the necessary support. In this way, we plan both to manage the project
process healthily and to improve ourselves in these contexts.

2. Architecture Design

2.1. Design Approach

 The design approach of the CSEK Requirements Management System includes several
steps to manage the software development process in an organized way. This approach aims to
satisfy both technical and operational needs, providing a flexible structure for future
development and extensions. The design process includes the following steps:

1. Literature Review: At the beginning of the project, a literature review was
conducted to research the field and examine existing studies. In this context, the
shortcomings of the existing studies and the aspects that could be improved
were observed. In addition, the key features of our project were better
recognized.

2. Requirements Gathering: This phase enabled the identification of user needs
and requirements. This process focused on addressing the needs of a
requirements management tool that could be used in various sectors. The needs
of the user roles were analyzed separately. Features such as bi-directional
traceability, customizable reporting, and role-based access control were
included in the project.

3. Software Architecture Design: Microservice architecture must be preferred as it
is thought to be suitable for the requirements of the project. Each module must
be designed as an independent service and Netflix Eureka, gRPC and Kafka
must be used for interaction between them. This structure must increase the
modularity of the system, facilitating both maintenance and extensibility.

7

4. Database Design: Data security and accessibility must be one of the important
points in system design. A secure and scalable database infrastructure must be
built using PostgreSQL. All requirements and user data must be stored securely
in this database. Performance optimization must be ensured by using Redis for
frequently accessing data. Also, data must be encrypted with AES-256
encryption at rest and TLS 1.3 protocol during transmission.

5. Performance Design: The system must be designed to meet performance needs
with a cloud-based architecture. This must ensure scalability and high
performance. In addition, it must be optimized to support 500 users
simultaneously

6. User-Friendly Interface and Web-Based Design: The system must be designed
with a user-friendly interface for administrators, system engineers and
reviewers. The web-based structure must provide a high accessibility design that
can be accessed from browsers.

7. Future Expandability: The system must be designed with a flexible architecture
so that new features can be easily integrated. Future development steps may
include AI-based requirements generation, more advanced reporting options,
and different integration features.

 CSEK's Requirements Management System must use this approach to deliver a design
that is high-performing and tailored to the user's needs.

8

2.2. Class Diagram

9

This diagram illustrates the structure and interaction of various components within a
CSEK Requirement Management System’s architecture designed for managing requirements
and snapshots, using modern communication and service technologies. It includes a User entity
with authentication and authorization managed by AuthenticationService (Keycloak).
ServiceDiscovery (Netflix Eureka) handles service registration and discovery. The system
incorporates synchronous communication through gRPC and asynchronous communication via
Kafka. Core modules like UserRequirements, SystemRequirements, and
SubheadingRequirements manage hierarchical requirement relationships, enabling creation,
editing, deletion, and linking functionalities. The HistoryLog tracks changes, while Baseline
and snapshotService focus on capturing and managing system snapshots stored in snapshot
storage (e.g., AWS). Additionally, DatabaseService (PostgreSQL) provides CRUD operations,
and ReportingService generates and exports reports.

2.3. ARCHITECTURAL DESIGN

2.3.1.Overview
The system uses a microservices architecture. This guarantees scalability. Maintenance

and use of independent services Each microservice is designed according to clean architecture
principles. It focuses on separating concerns. It provides a clear boundary between core
business logic and external dependencies. The system is implemented on Kotlin and uses the
Spring Boot framework, leveraging modern tools for caching, communication, and
authentication.
2.3.2. Technology Stack

Programming Language: Kotlin
Framework: Spring Boot
Database: PostgreSQL (for requirements and user data storage)
Caching: Redis (for improving performance)
Service Communication:
gRPC: For synchronous communication among User Requirements, the System
Requirements, and Subheading Requirements services.
Kafka: For asynchronous communication between Requirements Microservices and
Snapshot Service.
Service Discovery: Netflix Eureka (to manage microservices and their dynamic

locations).
Authentication & Authorization: Keycloak integrated via a REST API Gateway.
Snapshot Storage: Snapshots are stored in a cloud storage solution (e.g., AWS).

2.3.3.Microservices
1. User Requirement Service
Handles operations related to user requirements. Communicates with other
requirement services via gRPC, and communicates with snapshot service via Kafka.
2. System Requirement Service
Manages system requirements and links to user requirements. Communicates with

10

other requirement services via gRPC, and communicates with snapshot service via
Kafka.

3. Subheading Requirement Service
Manages subheading requirements and links to system requirements. Communicates
with other requirement services via gRPC, and communicates with snapshot service via

Kafka.
4. Snapshot Service
Stores snapshots in cloud storage and interacts with requirements services for
versioning using Kafka.
5. Reporting Service
Generates reports by retrieving data from the snapshot storage.

2.3.4.Clean Architecture Diagram

1. Presentation Layer: This is the layer where users interact with the system through
interfaces like a web application or API.
2. Application Layer: Manages the application's use cases by coordinating between the

Presentation Layer and the Domain Layer. It handles the business process logic but does not
include detailed business rules.

3. Domain Layer: Contains the core business logic and rules of the application,
independent of external systems or technologies.
4. Infrastructure Layer: Provides technical details and implementations that support the

application but are not part of the core business logic.

11

2.3.5.Service Communication
1. API Gateway (REST):
• Centralized entry point for the application, handling user requests through RESTful

communication and routing them to appropriate microservices.
• Integrated with Keycloak for user authentication and authorization using REST
protocols.
2. gRPC:
• Facilitates synchronous communication among the User Requirements, System
Requirements, and Subheading Requirements services to ensure efficient data
exchange.

3. Kafka:
• Manages asynchronous messaging between Requirements Microservices and
the Snapshot Service, ensuring reliability in data exchange.
4. Redis:
• Acts as a caching layer to optimize database queries and improve overall system
performance.
5. Netflix Eureka:
• Provides service discovery, allowing microservices to locate and communicate
with each other dynamically.

12

2.4. Activity Diagram

13

Figure is an activity diagram illustrating how our program operates in a scenario where
a user logs into the program, performs an operation, and then logs out. When a user successfully
logs in, their role is checked. If the user's role does not have permission to access the desired
operation, access is denied. While users with the Admin role have access to all operations, the
access for System Engineer and Reviewer roles is more restricted. The Reviewer can only
perform view operations on existing items in the system, whereas the System Engineer can also
make modifications related to requirements in addition to the Reviewer’s capabilities.

14

2.5. Sequence Diagram

15

The sequence diagram in Figure outlines the interaction between a user and the system,
beginning with a login request where the entered username and password are validated against
the database. Upon successful authentication, the system retrieves the user's role to determine
access rights. Users with the "Admin" role can assign roles, manipulate baselines, and store
them in the database, while both "Admin" and "System Engineer" roles can manipulate
requirements and store requirement modules. Users without the necessary roles are restricted
from performing these operations. Additionally, all users can view data stored in the system.

16

3. User Interface Design

On this page User Reqiurements are displayed in a sequential order.

17

System requirements can be seen with the Select Module option

18

19

From the right-click menu, the user can specify where the requirement comes from and where
it will go.

 Tracebility can be done with the Show Connections option.

20

21

22

 New Column option creates a new column with the entered title.

23

By pressing the + key, the rows in the forming column can be filled.

24

Changes made can be checked with the Changes option.

25

With the Baseline option, previous records are displayed and the current situation can

be compared with the desired past record.

26

27

The + sign above the requirements allows a new requirement to be added to the desired

line.

28

4. References

[1] draw.io - free flowchart maker and diagrams online. (n.d.). https://app.diagrams.net/

[2] Rules to clean architecture. (n.d.). https://www.ssw.com.au/rules/rules-to-better-clean-

architecture/.

[3] UML Class Diagram Tutorial. (n.d.). https://www.visual-paradigm.com/guide/uml-

unified-modeling-language/uml-class-diagram-tutorial/

[4] https://www.canva.com/

[5] How to Write a Software Design Document (SDD). (n.d.).

https://www.nuclino.com/articles/software-design-document

[6] Software Requirements Spesification – CSEK Requirements Management System

https://www.ssw.com.au/rules/rules-to-better-clean-architecture/
https://www.ssw.com.au/rules/rules-to-better-clean-architecture/
https://www.canva.com/

